Free Space Laser Communications

Dr. James Lesh
Jet Propulsion Laboratory
California Institute of Technology

T4

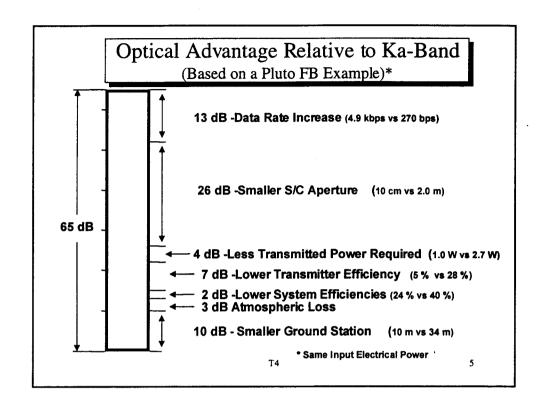
Outline of Presentation

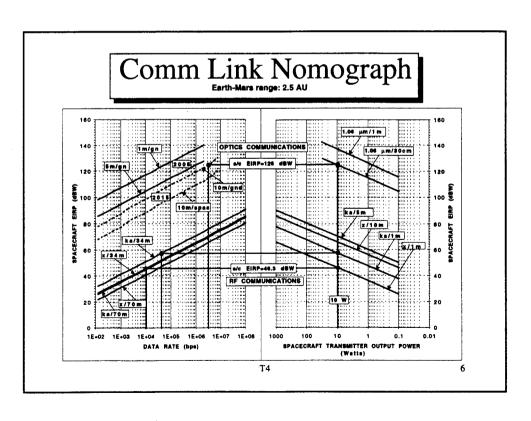
- Fundamentals
- Spacecraft Technology
- Ground Reception Systems
- Simplified Link Calculation
- Recent Demonstrations
- Future Demonstrations

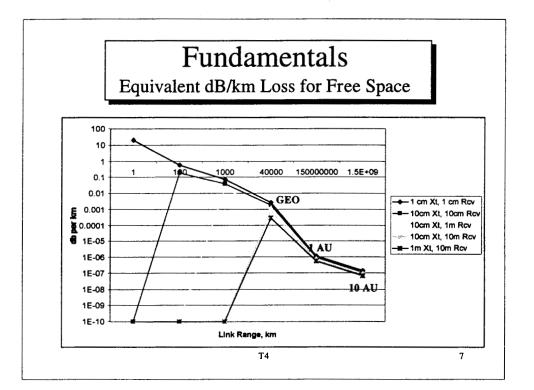
T4

Fundamentals Free Space Propagation

- Electromagnetic beams diverge at rates at least as fast as λ/d (Diffraction-limit)
 - $-\lambda$ is the wavelength of the radiation
 - d is the diameter of the transmitting aperture
- RF wavelengths usually in the cm-m range
- Optical wavelengths are in the μm range
- The more wavelengths across the aperture, the more narrow the beam divergence


Deep Space Communications
Beam Spread


Voyager (X-Band) at Saturn
(3.8m S/C Antenna)


Coptical at Saturn
(10 cm Telescope)

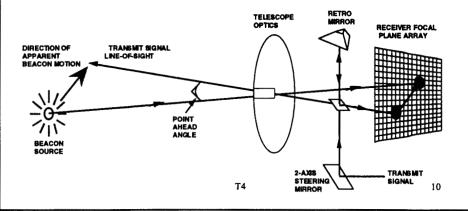
Earth
1 D_E

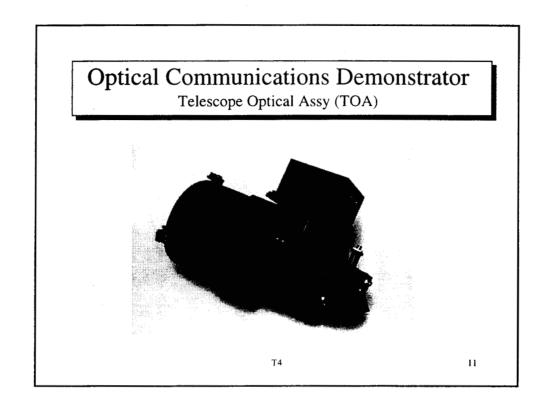
1 D_E

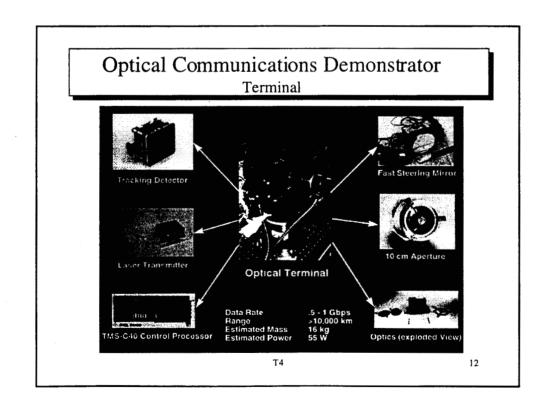
Fundamentals Good News/Bad News

- Good News:
 - Optical beams are more narrow
 - Concentrate transmitted energy on target RCVR
- Bad News:
 - Optical beams are more narrow
 - Narrow beams must be more precisely pointed
 - Must track beacon signal from intended receiver

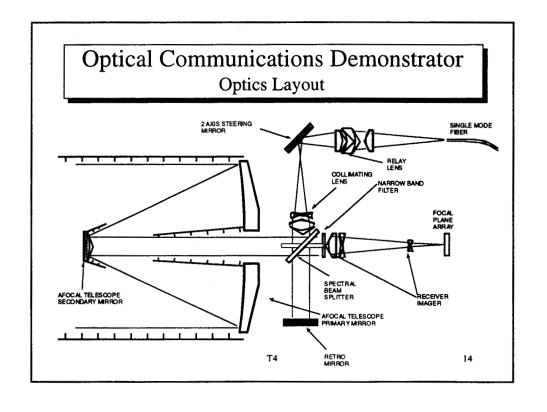
T4

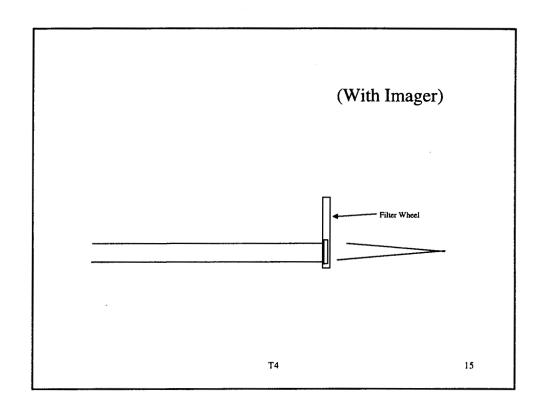

Spacecraft Technology

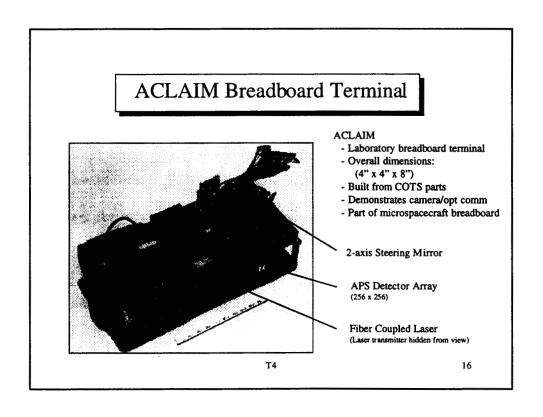

T4

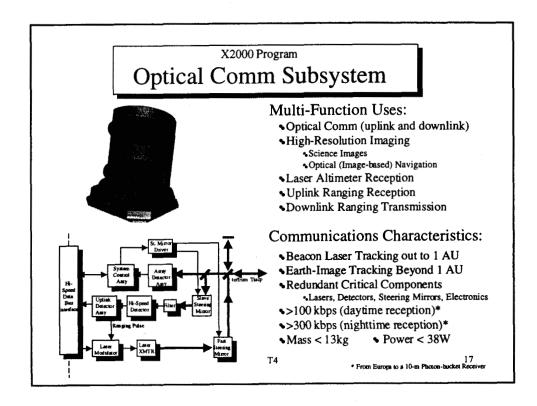

9

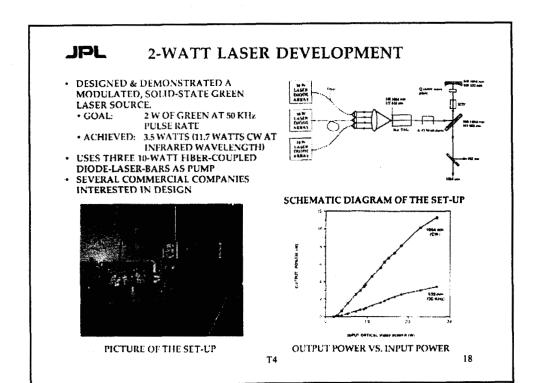
Optical Communications Demonstrator (OCD) Simplified Optical Design

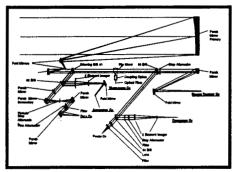

- Uses only one steering mirror and one detector array for all beam control functions
- · Eliminates many beam relay optics and need for large optical bench
- All optics are located on telescope body
- Fiber-coupled laser transmitter signal removes laser heat from optics







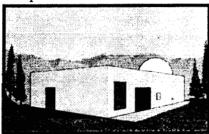

Telescope Optics Assembly (TOA) on gimbal Control Electronics and Enclosure

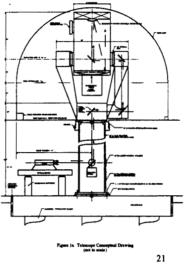


Lasercom Test and Eval Station

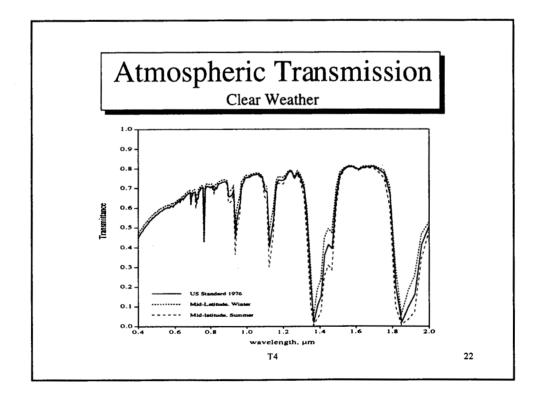
- LTES is a high optical quality instrument that characterizes the performance of laser communications terminals (LCT's)
 - Measures beam divergence, acquisition and tracking performance, optical output power, and BERs of LCTs up to 1.4 Gbps data rates
 - Appropriate exchange of beamsplitters and detectors allows spectral operating range to extend from 0.5 μm to 2 μm

T4


9


Ground Reception Systems

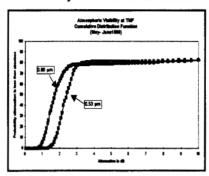
T4


1-m Optical Comm R+D Facility

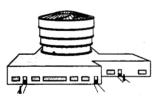
- Optical Comm Telescope Laboratory (OCTL)
- Located at JPL's Table Mountain Facility
 - 2.4 km (7400 ft) elevation
- 1-m diameter aperture
- Fast (Earth-orbit) tracking mount
- Completion at end of 2000

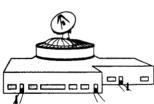
T4

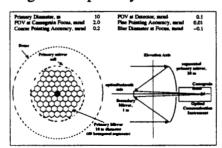
Atmospheric Visibility Data



. AVM Observatory at Goldstone, CA


- AVM Observatory at Table Mtn, CA


Visibility Cumulative Distribution


23

Deep Space Reception Station

- 10-m collection aperture
- Photon bucket (non-diffractionlimited)
- Segmented primary mirror

T4

Simplified Link Calculation

T4

25

Simplified Link Calculation

(Signal Level at Receiver)

- Calculate transmit beam divergence, $\theta = \lambda / d$
- Calculate spot diameter, Z, at target R meters away using Z=R* θ
- Calculate area of illuminated spot $(\pi Z^2/4)$
- Area of receiver = $\pi D^2/4$ (D=receiver diameter)
- Propagation loss (L_s) is fraction of signal intercepted (receiver area) relative to total spot area = D²/Z²
- Received power P_r (Watts) = $P_t * L_s * T_a * T_{to} * T_{ro}$
 - P_t = Transmitted power
- Ta = Atmospheric Transmission
- T_{to}= Transmit Optics Thruput T_{ro}= Receive Optics Thruput
- Received signal rate = Pr/(hv) (photons/sec)

 $hv = \frac{2e-19}{\lambda \text{ (in microns)}}$

T4

Simplified Link Calculation

(Background Level at Receiver)

- Background Effects
 - Point source interference signals produce a background flux rate over the receive aperture and over a spectral bandwidth (Watts/ m²*nm) if in the detector field-of-view
 - Distributed sources (e.g. daylight) provide a background flux rate over the receive aperture over the entire field-of-view of the receiver (Watts/m²*nm*Sr)
 - Background signals are limited by narrow band filters of BW (in nm) and by detector FPV (in Sr)
 - Received background power (P_b) = background flux level*Receiver area*filter BW (*FOV if extended source)
 - Background Noise rate = $P_h / (hv)$ (in photons/sec)

T4

27

Simplified Link Calculation

(Detection Performance)

 Signal Detection (performance depends on type of detector, coding, and background levels)

Receiver Type	Sensitivity
Inexpensive Receiver	> 100 photons/bit
State-of-the-Art Receiver	~ 10-20 photons/bit
Low Background/Low Rate Rcvr	< 1 photons/bit

T4

Comparison of Optical and RF Links

- · Optical links are often compared to RF links
 - Need to use a common comparison basis
 - But, optical and RF have some fundamental differences
- · Weather affects RF and optical systems differently
 - RF links experience weather fades infrequently
 - Optical must consider spatial diversity reception from the start.
- Need to develop an optical link design methodology that enables comparison with RF but allows for uniqueness of the two technologies

T4

29

Optical Weather Statistics Atmospheric Visibility Monitoring Data $\lambda = 860 \text{ nm}$ $\alpha = 860 \text{ nm}$ $\alpha = \text{atmospheric attenuation}; \quad \Delta \alpha = \text{attenuation uncertainty}; \quad P\alpha = \text{prob(attenuation} < \alpha$ Note: α must be adjusted for operational wavelength based on known (LOWTRAN) models (if different from measured wavelengths), and for elevation angle

Optical Weather Model

- Atmospheric attenuation (α) is a continuous distribution ranging from low values (clear conditions) to very high values (due to clouds)
- · Cloud outages impact "Station Availability"
 - Mitigated by station diversity
- Need to define what "outage" means
- Recommendation
 - Use AVM data to define atmospheric model
 - Select a value of α and the corresponding value of (P_{α})
 - P_{α} = Probability that attenuation < α
 - · Must be corrected for wavelength and elevation angle
 - Approximate the AVM distribution by two states
 - $< \alpha$ means clear (but with some attenuation)
 - $> \alpha$ means (totally) obscured by clouds
 - P_{α} determines station availability; α is nominal link attenuation and $\Delta\alpha$ is weather attenuation uncertainty (when available)

31

Link Analysis Using Weather Model

- Analyze link using $-\alpha$ (dB) for atmospheric transmission and $+/-\Delta\alpha/2$ as the favorable and adverse tolerances
- Design link Initially for a "Link Summary" of 0 dB margin using nominal parameter values and calculate the favorable $(+\sigma_1)$ and adverse $(-\sigma_2)$ uncertainties
- Calculate "Recommended Link Margin" based on the adverse link uncertainty (i.e. margin = $2\sigma_2$)
- Redo link design with a nominal link margin equal to the "Recommended Link Margin"
 - Uses visibility data as a basis for link loss and link loss uncertainty
 - Provides a formal basis for establishing value of link margin

Link	Analysis	Example

Link Design Control Table				
	Link	Design	Control	Table

Parameter	Nominal	Fav	Adv
Transmit laser power Transmit aperture dia	XXX	FFF	AAA
•		•	•
•	•	•	•
•	•	•	•
Atmospheric Trans. (dB)	-α	Δα/2	-Δα/2
•	•	•	•
Link Summary (0 dB Margin)	0	σ_1	<u>-σ</u> 2
Recommended Margin (dB)	2 σ ₂	Note:	2.20 corresponds to

T4

22

Link Availability Analysis

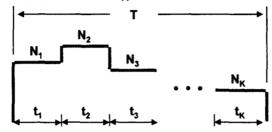
- Optical systems assume spatially-diverse reception
- Assume all ground stations are in independent weather cells (separated by few hundred km)
- Define a station as a "Candidate Station" if it can see spacecraft when atmosphere removed and above some minimum elevation angle (say 20 degrees)
- Define a station as "Available" if it is a candidate station <u>and</u> it has clear weather (i.e. atmospheric attenuation $< \alpha$)

Link Availability Analysis (Cont)

If N stations are "Candidate Stations", then the probability that m of them are "Available" is

$$P_{N}(m) = \binom{N}{m} (P\alpha)^{m} (1-P\alpha)^{N-m}$$

and the probability that <u>at least one</u> of the N stations is able to receive the link is


$$P_N = \sum_{m=1}^{N} P_N(m) = 1 - (1 - P_{\alpha})^N$$

T4

35

Link Availability Analysis (Cont)

Next, consider total time (T) of spacecraft support "pass". Let N_1 be the number of candidate stations at the beginning of this time, and let the number of candidate stations change with time over the pass duration from N_1 (at the beginning) to N_K at the end of the pass.

Let the corresponding times of N_i candidate stations be t

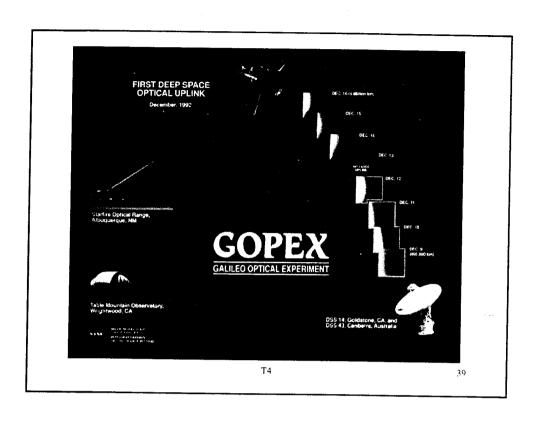
T4

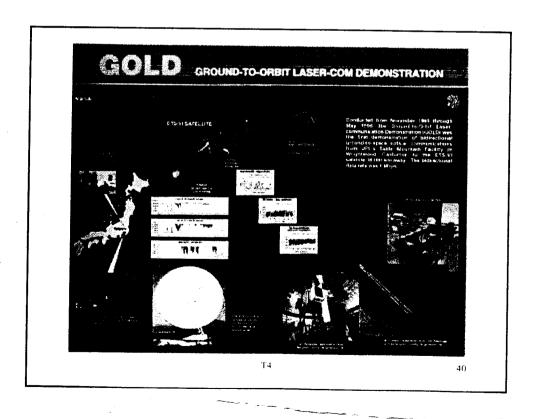
Link Availability Analysis (Cont)

Then, the daily "Expected Data Volume" (EDV) returned for the link considered above, with the weather and station configuration being considered is

$$EDV = R \sum_{i=1}^{K} t_i P_{Ni}$$

where "R" is the data rate in the link design control table

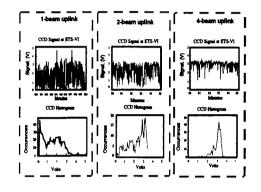

RECOMMENDATION: Use EDV for RF/Optical comparisons


T4

37

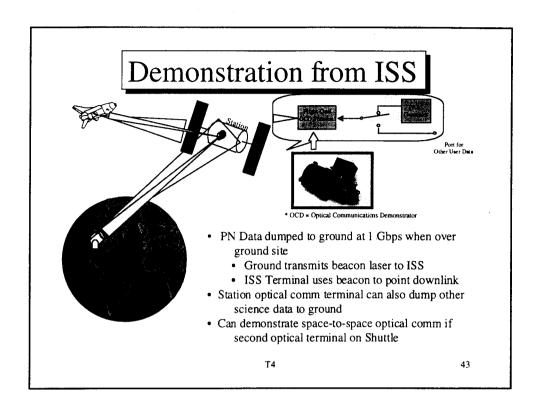
Recent Demonstrations

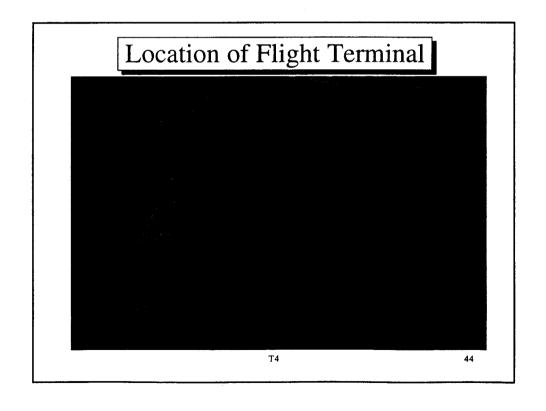
T4

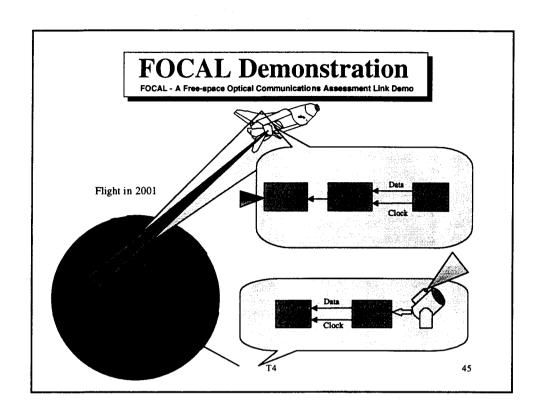

Ground-Orbit Lasercom Demo (GOLD) GOLD Multiple-beam Transmission

- Multiple beam uplink mitigates effects of atmospheric scintillation and beam wander
 - Beams are propagated through different atmospheric coherent cells
 - Each beam is delayed relative to the other by greater than laser's coherence length

T4


TMF 0.6-m Transmitter Telescope




Future Demonstrations

T4

42

Shuttle Link to Ground

1.6 Gbps

Transmit Laser Power	100	mW
Transmit Telescope Dia. (Space)	10	cm
Link Range (Slant range)	1050	km
Receive Telescope Dia. (Ground)	1	m
Atmospheric Losses (space-ground)	7	dB
System Losses	5.2	dB
Detector Efficiency	60	%
Data Rate	1.6	Gbps
Link Margin	21.3	dB

T4